Flow equations for the Hénon-Heiles Hamiltonian

Daniel Cremers, Andreas Mielke

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

8 Zitate (Scopus)

Abstract

The Hénon-Heiles Hamiltonian was introduced in 1964 [M. Hénon, C. Heiles, Astron. J. 69 (1964) 73] as a mathematical model to describe the chaotic motion of stars in a galaxy. By canonically transforming the classical Hamiltonian to a Birkhoff-Gustavson normal form, Delos and Swimm obtained a discrete quantum mechanical energy spectrum. The aim of the present work is to first quantize the classical Hamiltonian and to then diagonalize it using different variants of flow equations, a method of continuous unitary transformations introduced by Wegner in 1994 [Ann. Physik (Leipzig) 3 (1994) 77]. The results of the diagonalization via flow equations are comparable to those obtained by the classical transformation. In the case of commensurate frequencies the transformation turns out to be less lengthy. In addition, the dynamics of the quantum mechanical system are analyzed on the basis of the transformed observables.

OriginalspracheEnglisch
Seiten (von - bis)123-135
Seitenumfang13
FachzeitschriftPhysica D: Nonlinear Phenomena
Jahrgang126
Ausgabenummer1-2
DOIs
PublikationsstatusVeröffentlicht - 1 Feb. 1999
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „Flow equations for the Hénon-Heiles Hamiltonian“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren