Flexible rate allocation for local binary feature compression

Dominik Van Opdenbosch, Eckehard Steinbach

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Numerous real-time applications in computer vision rely on finding correspondences between local binary features. In many mobile scenarios, the visual information captured at a sensor node needs to be transmitted to a processing server, which is capable of storing the visual information or executing a complex analysis task. However, not necessarily all the visual information need to be transmitted. In this paper, we present a rate allocation scheme that is capable of categorizing features into classes according to their usefulness and select the amount of data spent on each class to maximize the overall performance of a computer vision task. We demonstrate the approach using ORB, BRISK, and FREAK features and show the improvements on a homography estimation task.

OriginalspracheEnglisch
Titel2018 IEEE International Conference on Image Processing, ICIP 2018 - Proceedings
Herausgeber (Verlag)IEEE Computer Society
Seiten3259-3263
Seitenumfang5
ISBN (elektronisch)9781479970612
DOIs
PublikationsstatusVeröffentlicht - 29 Aug. 2018
Veranstaltung25th IEEE International Conference on Image Processing, ICIP 2018 - Athens, Griechenland
Dauer: 7 Okt. 201810 Okt. 2018

Publikationsreihe

NameProceedings - International Conference on Image Processing, ICIP
ISSN (Print)1522-4880

Konferenz

Konferenz25th IEEE International Conference on Image Processing, ICIP 2018
Land/GebietGriechenland
OrtAthens
Zeitraum7/10/1810/10/18

Fingerprint

Untersuchen Sie die Forschungsthemen von „Flexible rate allocation for local binary feature compression“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren