Flexible Informed Trees (FIT∗): Adaptive Batch-Size Approach in Informed Sampling-Based Path Planning

Liding Zhang, Zhenshan Bing, Kejia Chen, Lingyun Chen, Kuanqi Cai, Yu Zhang, Fan Wu, Peter Krumbholz, Zhilin Yuan, Sami Haddadin, Alois Knoll

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

In path planning, anytime almost-surely asymptotically optimal planners dominate the benchmark of sampling-based planners. A notable example is Batch Informed Trees (BIT∗), where planners iteratively determine paths to batches of vertices within the exploration area. However, utilizing a consistent batch size is inefficient for initial pathfinding and optimal performance, it relies on effective task allocation. This paper introduces Flexible Informed Trees (FIT∗), a sampling-based planner that integrates an adaptive batch-size method to enhance the initial path convergence rate. FIT∗ employs a flexible approach in adjusting batch sizes dynamically based on the inherent dimension of the configuration spaces and the hypervolume of the n-dimensional hyperellipsoid. By applying dense and sparse sampling strategy, FIT∗ improves convergence rate while finding successful solutions faster with lower initial solution cost. This method enhances the planner's ability to handle confined, narrow spaces in the initial finding phase and increases batch vertices sampling frequency in the optimization phase. FIT∗ outperforms existing single-query, sampling-based planners on the tested problems in R2 to R8, and was demonstrated on a real-world mobile manipulation task.

OriginalspracheEnglisch
Titel2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten3146-3152
Seitenumfang7
ISBN (elektronisch)9798350377705
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024 - Abu Dhabi, Vereinigte Arabische Emirate
Dauer: 14 Okt. 202418 Okt. 2024

Publikationsreihe

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (elektronisch)2153-0866

Konferenz

Konferenz2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
Land/GebietVereinigte Arabische Emirate
OrtAbu Dhabi
Zeitraum14/10/2418/10/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „Flexible Informed Trees (FIT∗): Adaptive Batch-Size Approach in Informed Sampling-Based Path Planning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren