Flexible Gear Assembly with Visual Servoing and Force Feedback

Junjie Ming, Daniel Bargmann, Hongpeng Cao, Marco Caccamo

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

This paper presents a vision-guided two-stage approach with force feedback to achieve high-precision and flexible gear assembly. The proposed approach integrates YOLO to coarsely localize the target workpiece in a searching phase and deep reinforcement learning (DRL) to complete the insertion. Specifically, DRL addresses the challenge of partial visibility when the on-wrist camera is too close to the workpiece of a small size. Moreover, we use force feedback to improve the robustness of the vision-guided assembly process. To reduce the effort of collecting training data on real robots, we use synthetic RGB images for training YOLO and construct an offline interaction environment leveraging sampled real-world data for training DRL agents. The proposed approach was evaluated in an industrial gear assembly experiment, which requires an assembly clearance of 0.3 mm, demonstrating high robustness and efficiency in gear searching and insertion from arbitrary positions.

OriginalspracheEnglisch
Titel2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten8276-8282
Seitenumfang7
ISBN (elektronisch)9781665491907
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023 - Detroit, USA/Vereinigte Staaten
Dauer: 1 Okt. 20235 Okt. 2023

Publikationsreihe

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (elektronisch)2153-0866

Konferenz

Konferenz2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023
Land/GebietUSA/Vereinigte Staaten
OrtDetroit
Zeitraum1/10/235/10/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Flexible Gear Assembly with Visual Servoing and Force Feedback“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren