TY - JOUR
T1 - Fit by design
T2 - Developing seed–substrate combinations to adapt dike grasslands to microclimatic variation
AU - Bauer, Markus
AU - Huber, Jakob K.
AU - Kollmann, Johannes
N1 - Publisher Copyright:
© 2023 The Authors. Journal of Applied Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
PY - 2023/11
Y1 - 2023/11
N2 - Sowing is a well-established restoration technique to overcome dispersal limitation. Seed mixtures adapted to certain environmental conditions, like substrate or microclimate, are most effective to achieve functional communities. This is especially important if the restored vegetation has to protect critical infrastructure like roadsides and dikes. Here, an improved seed–substrate combination will secure slope stability, make restorations more effective and generate species-rich grasslands. A full-factorial field experiment addressed this topic on a dike at River Danube in SE Germany in 2018–2021. Within 288 plots, we tested three sand admixtures, two substrate depths, two seed densities and two seed mixture types (mesic hay meadow and semidry calcareous grassland) in north and south exposition and measured the recovery completeness by calculating the successional distance to reference sites, the persistence of sown species and the Favourable Conservation Status (FCS) of target species. Overall, the sown vegetation developed in the desired direction, but a recovery debt remained after 4 years, and some plots still showed similarities to negative references from ruderal sites. In north exposition, hay meadow seed mixtures developed closer to their reference communities than dry grassland mixtures to their reference. In south exposition, the sown communities established poorly, which might be due to a severe drought during establishment. This initial negative effect remained over the entire observation period. Sand admixture had a slightly positive effect on target variables, while the tested substrate depths, seed densities and seed mixture types had no effects on species persistence or FCS. Synthesis and applications: Site-adapted seed mixtures make restoration more effective, while applying several seed–substrate combinations might foster beta diversity. Furthermore, additional management efforts are recommended, as they might be necessary to reduce the recovery debt, as well as re-sowing after unfavourable conditions like droughts.
AB - Sowing is a well-established restoration technique to overcome dispersal limitation. Seed mixtures adapted to certain environmental conditions, like substrate or microclimate, are most effective to achieve functional communities. This is especially important if the restored vegetation has to protect critical infrastructure like roadsides and dikes. Here, an improved seed–substrate combination will secure slope stability, make restorations more effective and generate species-rich grasslands. A full-factorial field experiment addressed this topic on a dike at River Danube in SE Germany in 2018–2021. Within 288 plots, we tested three sand admixtures, two substrate depths, two seed densities and two seed mixture types (mesic hay meadow and semidry calcareous grassland) in north and south exposition and measured the recovery completeness by calculating the successional distance to reference sites, the persistence of sown species and the Favourable Conservation Status (FCS) of target species. Overall, the sown vegetation developed in the desired direction, but a recovery debt remained after 4 years, and some plots still showed similarities to negative references from ruderal sites. In north exposition, hay meadow seed mixtures developed closer to their reference communities than dry grassland mixtures to their reference. In south exposition, the sown communities established poorly, which might be due to a severe drought during establishment. This initial negative effect remained over the entire observation period. Sand admixture had a slightly positive effect on target variables, while the tested substrate depths, seed densities and seed mixture types had no effects on species persistence or FCS. Synthesis and applications: Site-adapted seed mixtures make restoration more effective, while applying several seed–substrate combinations might foster beta diversity. Furthermore, additional management efforts are recommended, as they might be necessary to reduce the recovery debt, as well as re-sowing after unfavourable conditions like droughts.
KW - artificial soil mixture
KW - dry grasslands
KW - ecological restoration
KW - levee
KW - persistence
KW - river embankment
KW - sowing
KW - species composition
UR - http://www.scopus.com/inward/record.url?scp=85169337542&partnerID=8YFLogxK
U2 - 10.1111/1365-2664.14497
DO - 10.1111/1365-2664.14497
M3 - Article
AN - SCOPUS:85169337542
SN - 0021-8901
VL - 60
SP - 2413
EP - 2424
JO - Journal of Applied Ecology
JF - Journal of Applied Ecology
IS - 11
ER -