Finite-Set Model Predictive Control for 17-Level Inverter with Reduced Number of Iterations in Photovoltaic Applications

Mohamed Abdelrahem, Ibrahim Harbi, Mostafa Ahmed, M. Saad Bin Arif, Ralph Kennel, Jose Rodriguez

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

Finite-set model predictive control (FS-MPC) algorithms provide excellent dynamic performance for the power electronics converters with the ability to easily include any non-linearities and constraints. However, the high number of iterations required for prediction and cost function evaluation, especially for multi-level converters, hampers the implementation of the FS-MPC techniques. In this paper, firstly, the deadbeat concept is utilized to directly obtain the reference voltage vector. Accordingly, the iterations required for prediction are eliminated. Secondly, the number of iterations for cost function evaluation is also reduced by selecting a certain number of voltage vectors based on the value of the reference voltage vector. Finally, experimental results using hardware in the loop (HIL) technology are given to validate the proposed FS-MPC technique.

OriginalspracheEnglisch
Titel2023 IEEE International Conference on Predictive Control of Electrical Drives and Power Electronics, PRECEDE 2023
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9798350396867
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung2023 IEEE International Conference on Predictive Control of Electrical Drives and Power Electronics, PRECEDE 2023 - Wuhan, China
Dauer: 16 Juni 202319 Juni 2023

Publikationsreihe

Name2023 IEEE International Conference on Predictive Control of Electrical Drives and Power Electronics, PRECEDE 2023

Konferenz

Konferenz2023 IEEE International Conference on Predictive Control of Electrical Drives and Power Electronics, PRECEDE 2023
Land/GebietChina
OrtWuhan
Zeitraum16/06/2319/06/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Finite-Set Model Predictive Control for 17-Level Inverter with Reduced Number of Iterations in Photovoltaic Applications“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren