TY - JOUR
T1 - Finding the Optimal Surgical Incision Pattern—A Biomechanical Study
AU - Wachtel, Nikolaus
AU - Heidekrueger, Paul I.
AU - Brenner, Carolin
AU - Endres, Maximilian
AU - Burgkart, Rainer
AU - Micheler, Carina
AU - Thon, Niklas
AU - Ehrl, Denis
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/5/1
Y1 - 2022/5/1
N2 - The closure of wounds and subsequent optimal wound healing is essential to any successful surgical intervention. Especially on parts of the body with limited possibilities for local reconstruction, optimal distribution of load is essential. The aim of the present study was therefore to examine three different incision patterns, conventional straight, Lazy-S and Zigzag, with regard to their biomechanical stability and mode of failure on a porcine skin model. Our results demonstrate the superior biomechanical stability of Lazy-S and Zigzag incision patterns with perpendicular suture placement. This holds true, in particular, for Zigzag incisions, which showed the highest values for all parameters assessed. Moreover, the observed superior stability of Lazy-S and Zigzag incision patterns was diminished when sutures were placed in tensile direction. The conventional straight incision represents the standard access for a large number of surgical procedures. However, we were able to demonstrate the superior biomechanical stability of alternative incision patterns, in particular the Zigzag incision. This is most likely caused by an improved distribution of tensile force across the wound due to the perpendicular placement of sutures. Moreover, this technique offers additional advantages, such as a better overview of the operated area as well as several cosmetic improvements. We therefore advocate that the surgeon should consider the use of a Zigzag incision over a conventional straight incision pattern.
AB - The closure of wounds and subsequent optimal wound healing is essential to any successful surgical intervention. Especially on parts of the body with limited possibilities for local reconstruction, optimal distribution of load is essential. The aim of the present study was therefore to examine three different incision patterns, conventional straight, Lazy-S and Zigzag, with regard to their biomechanical stability and mode of failure on a porcine skin model. Our results demonstrate the superior biomechanical stability of Lazy-S and Zigzag incision patterns with perpendicular suture placement. This holds true, in particular, for Zigzag incisions, which showed the highest values for all parameters assessed. Moreover, the observed superior stability of Lazy-S and Zigzag incision patterns was diminished when sutures were placed in tensile direction. The conventional straight incision represents the standard access for a large number of surgical procedures. However, we were able to demonstrate the superior biomechanical stability of alternative incision patterns, in particular the Zigzag incision. This is most likely caused by an improved distribution of tensile force across the wound due to the perpendicular placement of sutures. Moreover, this technique offers additional advantages, such as a better overview of the operated area as well as several cosmetic improvements. We therefore advocate that the surgeon should consider the use of a Zigzag incision over a conventional straight incision pattern.
KW - surgical incision
KW - wound healing
KW - zigzag incision
UR - http://www.scopus.com/inward/record.url?scp=85129387590&partnerID=8YFLogxK
U2 - 10.3390/jcm11092600
DO - 10.3390/jcm11092600
M3 - Article
AN - SCOPUS:85129387590
SN - 2077-0383
VL - 11
JO - Journal of Clinical Medicine
JF - Journal of Clinical Medicine
IS - 9
M1 - 2600
ER -