Feature and Output Consistency Training for Semi-Supervised Building Footprint Generation

Qingyu Li, Yilei Shi, Xiao Xiang Zhu

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

3 Zitate (Scopus)

Abstract

Building footprint maps are important to urban planning and monitoring. However, most existing approaches that fall back on convolutional neural networks (CNNs), require massive annotated samples for network learning. In this research, we propose a novel semi-supervised network, which can help to deal with this issue by leveraging a large amount of unlabeled data. Considering that rich information is also encoded in feature maps, we propose to integrate the consistency of both features and outputs in the end-to-end network training of unlabeled samples on data perturbation, enabling to impose additional constraints. Experiments are conducted on Inria dataset. Our approach is much superior to the state-of-the-art methods in both quantitative and qualitative results.

OriginalspracheEnglisch
TitelIGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten171-174
Seitenumfang4
ISBN (elektronisch)9781665427920
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung2022 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2022 - Kuala Lumpur, Malaysia
Dauer: 17 Juli 202222 Juli 2022

Publikationsreihe

NameInternational Geoscience and Remote Sensing Symposium (IGARSS)
Band2022-July

Konferenz

Konferenz2022 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2022
Land/GebietMalaysia
OrtKuala Lumpur
Zeitraum17/07/2222/07/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „Feature and Output Consistency Training for Semi-Supervised Building Footprint Generation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren