Fast multi-parameter performance modeling

Alexandru Calotoiu, David Beckingsale, Christopher W. Earl, Torsten Hoefler, Ian Karlin, Martin Schulz, Felix Wolf

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

46 Zitate (Scopus)

Abstract

Tuning large applications requires a clever exploration of the design and configuration space. Especially on supercomputers, this space is so large that its exhaustive traversal via performance experiments becomes too expensive, if not impossible. Manually creating analytical performance models provides insights into optimization opportunities but is extremely laborious if done for applications of realistic size. If we must consider multiple performance-relevant parameters and their possible interactions, a common requirement, this task becomes even more complex. We build on previous work on automatic scalability modeling and significantly extend it to allow insightful modeling of any combination of application execution parameters. Multi-parameter modeling has so far been outside the reach of automatic methods due to the exponential growth of the model search space. We develop a new technique to traverse the search space rapidly and generate insightful performance models that enable a wide range of uses from performance predictions for balanced machine design to performance tuning.

OriginalspracheEnglisch
TitelProceedings - 2016 IEEE International Conference on Cluster Computing, CLUSTER 2016
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten172-181
Seitenumfang10
ISBN (elektronisch)9781509036530
DOIs
PublikationsstatusVeröffentlicht - 6 Dez. 2016
Extern publiziertJa
Veranstaltung2016 IEEE International Conference on Cluster Computing, CLUSTER 2016 - Taipei, Taiwan
Dauer: 13 Sept. 201615 Sept. 2016

Publikationsreihe

NameProceedings - IEEE International Conference on Cluster Computing, ICCC
ISSN (Print)1552-5244

Konferenz

Konferenz2016 IEEE International Conference on Cluster Computing, CLUSTER 2016
Land/GebietTaiwan
OrtTaipei
Zeitraum13/09/1615/09/16

Fingerprint

Untersuchen Sie die Forschungsthemen von „Fast multi-parameter performance modeling“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren