Fast matching of planar shapes in sub-cubic runtime

Frank R. Schmidt, Dirk Farin, Daniel Cremers

Publikation: KonferenzbeitragPapierBegutachtung

40 Zitate (Scopus)

Abstract

The matching of planar shapes can be cast as a problem of finding the shortest path through a graph spanned by the two shapes, where the nodes of the graph encode the local similarity of respective points on each contour. While this problem can be solved using Dynamic Time Warping, the complete search over the initial correspondence leads to cubic runtime in the number of sample points. In this paper, we cast the shape matching problem as one of finding the shortest circular path on a torus. We propose an algorithm to determine this shortest cycle which has provably sub-cubic runtime. Numerical experiments demonstrate that the proposed algorithm provides faster shape matching than previous methods. As an application, we show that it allows to efficiently compute a clustering of a shape data base.

OriginalspracheEnglisch
DOIs
PublikationsstatusVeröffentlicht - 2007
Extern publiziertJa
Veranstaltung2007 IEEE 11th International Conference on Computer Vision, ICCV - Rio de Janeiro, Brasilien
Dauer: 14 Okt. 200721 Okt. 2007

Konferenz

Konferenz2007 IEEE 11th International Conference on Computer Vision, ICCV
Land/GebietBrasilien
OrtRio de Janeiro
Zeitraum14/10/0721/10/07

Fingerprint

Untersuchen Sie die Forschungsthemen von „Fast matching of planar shapes in sub-cubic runtime“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren