Fast low-temperature irradiation creep driven by athermal defect dynamics

Alexander Feichtmayer, Max Boleininger, Johann Riesch, Daniel R. Mason, Luca Reali, Till Höschen, Maximilian Fuhr, Thomas Schwarz-Selinger, Rudolf Neu, Sergei L. Dudarev

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

3 Zitate (Scopus)

Abstract

The occurrence of high stress concentrations in reactor components is a still intractable phenomenon encountered in fusion reactor design. Here, we observe and quantitatively model a non-linear high-dose radiation mediated microstructure evolution effect that facilitates fast stress relaxation in the most challenging low-temperature limit. In situ observations of a tensioned tungsten wire exposed to a high-energy ion beam show that internal stress of up to 2 GPa relaxes within minutes, with the extent and time-scale of relaxation accurately predicted by a parameter-free multiscale model informed by atomistic simulations. As opposed to conventional notions of radiation creep, the effect arises from the self-organisation of nanoscale crystal defects, athermally coalescing into extended polarized dislocation networks that compensate and alleviate the external stress. (Figure presented.)

OriginalspracheEnglisch
Aufsatznummer218
FachzeitschriftCommunications Materials
Jahrgang5
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - Dez. 2024

Fingerprint

Untersuchen Sie die Forschungsthemen von „Fast low-temperature irradiation creep driven by athermal defect dynamics“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren