Fast kernel ICA using an approximate Newton method

Hao Shen, Stefanie Jegelka, Arthur Gretton

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

7 Zitate (Scopus)

Abstract

Recent approaches to independent component analysis (ICA) have used kernel independence measures to obtain very good performance, particularly where classical methods experience difficulty (for instance, sources with near-zero kurtosis). We present fast kernel ICA (FastKICA), a novel optimisation technique for one such kernel independence measure, the Hilbert-Schmidt independence criterion (HSIC). Our search procedure uses an approximate Newton method on the special orthogonal group, where we estimate the Hessian locally about independence. We employ incomplete Cholesky decomposition to efficiently compute the gradient and approximate Hessian. FastKICA results in more accurate solutions at a given cost compared with gradient descent, and is relatively insensitive to local minima when initialised far from independence. These properties allow kernel approaches to be extended to problems with larger numbers of sources and observations. Our method is competitive with other modern and classical ICA approaches in both speed and accuracy.

OriginalspracheEnglisch
Seiten (von - bis)476-483
Seitenumfang8
FachzeitschriftJournal of Machine Learning Research
Jahrgang2
PublikationsstatusVeröffentlicht - 2007
Extern publiziertJa
Veranstaltung11th International Conference on Artificial Intelligence and Statistics, AISTATS 2007 - San Juan, Puerto Rico
Dauer: 21 März 200724 März 2007

Fingerprint

Untersuchen Sie die Forschungsthemen von „Fast kernel ICA using an approximate Newton method“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren