Fast IMU-based Dual Estimation of Human Motion and Kinematic Parameters via Progressive In-Network Computing

Xiaobing Dai, Huanzhuo Wu, Siyi Wang, Junjie Jiao, Giang T. Nguyen, Frank H.P. Fitzek, Sandra Hirche

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

Many applications involve humans in the loop, where continuous and accurate human motion monitoring provides valuable information for safe and intuitive human-machine interaction. Portable devices such as inertial measurement units (IMUs) are applicable to monitor human motions, while in practice often limited computational power is available locally. The human motion in task space coordinates requires not only the human joint motion but also the nonlinear coordinate transformation depending on the parameters such as human limb length. In most applications, measuring these kinematics parameters for each individual requires undesirably high effort. Therefore, it is desirable to estimate both, the human motion and kinematic parameters from IMUs. In this work, we propose a novel computational framework for dual estimation in real-time exploiting in-network computational resources. We adopt the concept of field Kalman filtering, where the dual estimation problem is decomposed into a fast state estimation process and a computationally expensive parameter estimation process. In order to further accelerate the convergence, the parameter estimation is progressively computed on multiple networked computational nodes. The superiority of our proposed method is demonstrated by a simulation of a human arm, where the estimation accuracy is shown to converge faster than with conventional approaches.

OriginalspracheEnglisch
TitelIFAC-PapersOnLine
Redakteure/-innenHideaki Ishii, Yoshio Ebihara, Jun-ichi Imura, Masaki Yamakita
Herausgeber (Verlag)Elsevier B.V.
Seiten8875-8882
Seitenumfang8
Auflage2
ISBN (elektronisch)9781713872344
DOIs
PublikationsstatusVeröffentlicht - 1 Juli 2023
Veranstaltung22nd IFAC World Congress - Yokohama, Japan
Dauer: 9 Juli 202314 Juli 2023

Publikationsreihe

NameIFAC-PapersOnLine
Nummer2
Band56
ISSN (elektronisch)2405-8963

Konferenz

Konferenz22nd IFAC World Congress
Land/GebietJapan
OrtYokohama
Zeitraum9/07/2314/07/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Fast IMU-based Dual Estimation of Human Motion and Kinematic Parameters via Progressive In-Network Computing“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren