Fast and Scalable Network Slicing by Integrating Deep Learning with Lagrangian Methods

Tianlun Hu, Qi Liao, Qiang Liu, Antonio Massaro, Georg Carle

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Network slicing is a key technique in 5G and beyond for efficiently supporting diverse services. Many network slicing solutions rely on deep learning to manage complex and high-dimensional resource allocation problems. However, deep learning models suffer limited generalization and adaptability to dynamic slicing configurations. In this paper, we propose a novel frame-work that integrates constrained optimization methods and deep learning models, resulting in strong generalization and superior approximation capability. Based on the proposed framework, we design a new neural-assisted algorithm to allocate radio resources to slices to maximize the network utility under inter-slice resource constraints. The algorithm exhibits high scalability, accommodating varying numbers of slices and slice configurations with ease. We implement the proposed solution in a system-level network simulator and evaluate its performance extensively by comparing it to state-of-the-art solutions including deep reinforcement learning approaches. The numerical results show that our solution obtains near-optimal quality-of-service satisfaction and promising generalization performance under different network slicing scenarios.

OriginalspracheEnglisch
TitelGLOBECOM 2023 - 2023 IEEE Global Communications Conference
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten6346-6351
Seitenumfang6
ISBN (elektronisch)9798350310900
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung2023 IEEE Global Communications Conference, GLOBECOM 2023 - Kuala Lumpur, Malaysia
Dauer: 4 Dez. 20238 Dez. 2023

Publikationsreihe

NameProceedings - IEEE Global Communications Conference, GLOBECOM
ISSN (Print)2334-0983
ISSN (elektronisch)2576-6813

Konferenz

Konferenz2023 IEEE Global Communications Conference, GLOBECOM 2023
Land/GebietMalaysia
OrtKuala Lumpur
Zeitraum4/12/238/12/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Fast and Scalable Network Slicing by Integrating Deep Learning with Lagrangian Methods“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren