TY - JOUR
T1 - Fast and flexible temporal point processes with triangular maps
AU - Shchur, Oleksandr
AU - Gao, Nicholas
AU - Biloš, Marin
AU - Günnemann, Stephan
N1 - Publisher Copyright:
© 2020 Neural information processing systems foundation. All rights reserved.
PY - 2020
Y1 - 2020
N2 - Temporal point process (TPP) models combined with recurrent neural networks provide a powerful framework for modeling continuous-time event data. While such models are flexible, they are inherently sequential and therefore cannot benefit from the parallelism of modern hardware. By exploiting the recent developments in the field of normalizing flows, we design TriTPP— a new class of non-recurrent TPP models, where both sampling and likelihood computation can be done in parallel. TriTPP matches the flexibility of RNN-based methods but permits orders of magnitude faster sampling. This enables us to use the new model for variational inference in continuous-time discrete-state systems. We demonstrate the advantages of the proposed framework on synthetic and real-world datasets.
AB - Temporal point process (TPP) models combined with recurrent neural networks provide a powerful framework for modeling continuous-time event data. While such models are flexible, they are inherently sequential and therefore cannot benefit from the parallelism of modern hardware. By exploiting the recent developments in the field of normalizing flows, we design TriTPP— a new class of non-recurrent TPP models, where both sampling and likelihood computation can be done in parallel. TriTPP matches the flexibility of RNN-based methods but permits orders of magnitude faster sampling. This enables us to use the new model for variational inference in continuous-time discrete-state systems. We demonstrate the advantages of the proposed framework on synthetic and real-world datasets.
UR - http://www.scopus.com/inward/record.url?scp=85104225480&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85104225480
SN - 1049-5258
VL - 2020-December
JO - Advances in Neural Information Processing Systems
JF - Advances in Neural Information Processing Systems
T2 - 34th Conference on Neural Information Processing Systems, NeurIPS 2020
Y2 - 6 December 2020 through 12 December 2020
ER -