Fast and flexible temporal point processes with triangular maps

Oleksandr Shchur, Nicholas Gao, Marin Biloš, Stephan Günnemann

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

14 Zitate (Scopus)

Abstract

Temporal point process (TPP) models combined with recurrent neural networks provide a powerful framework for modeling continuous-time event data. While such models are flexible, they are inherently sequential and therefore cannot benefit from the parallelism of modern hardware. By exploiting the recent developments in the field of normalizing flows, we design TriTPP— a new class of non-recurrent TPP models, where both sampling and likelihood computation can be done in parallel. TriTPP matches the flexibility of RNN-based methods but permits orders of magnitude faster sampling. This enables us to use the new model for variational inference in continuous-time discrete-state systems. We demonstrate the advantages of the proposed framework on synthetic and real-world datasets.

OriginalspracheEnglisch
FachzeitschriftAdvances in Neural Information Processing Systems
Jahrgang2020-December
PublikationsstatusVeröffentlicht - 2020
Veranstaltung34th Conference on Neural Information Processing Systems, NeurIPS 2020 - Virtual, Online
Dauer: 6 Dez. 202012 Dez. 2020

Fingerprint

Untersuchen Sie die Forschungsthemen von „Fast and flexible temporal point processes with triangular maps“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren