Fast and accurate point cloud registration by exploiting inverse cumulative histograms (ICHs)

Martin Weinmann, Boris Jutzi

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

4 Zitate (Scopus)

Abstract

The automatic and accurate alignment of captured point clouds is an important task for digitization, reconstruction and interpretation of 3D scenes. Standard approaches such as the ICP algorithm and Least Squares 3D Surface Matching require a good a priori alignment of the scans for obtaining satisfactory results. In this paper, we propose a new and fast methodology for automatic point cloud registration which does not require a good a priori alignment and is still able to recover the transformation parameters between two point clouds very accurately. The registration process is divided into coarse registration based on 3D/2D correspondences and fine registration exploiting 3D/3D correspondences. As the reliability of single 3D/2D correspondences is directly taken into account by applying Inverse Cumulative Histograms (ICHs), this approach is also capable to detect reliable tie points, even when using noisy raw point cloud data. The performance of the proposed methodology is demonstrated on a benchmark dataset and therefore allows for direct comparison with other already existing or future approaches.

OriginalspracheEnglisch
TitelJoint Urban Remote Sensing Event 2013, JURSE 2013
Herausgeber (Verlag)IEEE Computer Society
Seiten218-221
Seitenumfang4
ISBN (Print)9781479902132
DOIs
PublikationsstatusVeröffentlicht - 2013
Extern publiziertJa
Veranstaltung2013 Joint Urban Remote Sensing Event, JURSE 2013 - Sao Paulo, Brasilien
Dauer: 21 Apr. 201323 Apr. 2013

Publikationsreihe

NameJoint Urban Remote Sensing Event 2013, JURSE 2013

Konferenz

Konferenz2013 Joint Urban Remote Sensing Event, JURSE 2013
Land/GebietBrasilien
OrtSao Paulo
Zeitraum21/04/1323/04/13

Fingerprint

Untersuchen Sie die Forschungsthemen von „Fast and accurate point cloud registration by exploiting inverse cumulative histograms (ICHs)“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren