FACE AGGREGATION NETWORK FOR VIDEO FACE RECOGNITION

Stefan Hörmann, Zhenxiang Cao, Martin Knoche, Fabian Herzog, Gerhard Rigoll

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

5 Zitate (Scopus)

Abstract

Typical approaches for video face recognition aggregate faces in a feature space to obtain a single feature representing the entire video. Unlike most previous approaches, we aggregate the faces directly in order to additionally obtain a single representative face as an intermediate output, from which a more discriminative feature vector is extracted. To overcome the limitation of a fixed number of input images of the state of the art in face aggregation, we incorporate a permutation invariant U-Net architecture capable of processing an arbitrary number of frames, which is employed in a generative adversarial network. We demonstrate the effectiveness of our method on three popular benchmark datasets for video face recognition. Our approach outperforms the baselines on the YouTube Faces dataset, obtaining an accuracy of 96.62 %. Besides, we show that our method is robust against motion blur.

OriginalspracheEnglisch
Titel2021 IEEE International Conference on Image Processing, ICIP 2021 - Proceedings
Herausgeber (Verlag)IEEE Computer Society
Seiten2973-2977
Seitenumfang5
ISBN (elektronisch)9781665441155
DOIs
PublikationsstatusVeröffentlicht - 2021
Veranstaltung2021 IEEE International Conference on Image Processing, ICIP 2021 - Anchorage, USA/Vereinigte Staaten
Dauer: 19 Sept. 202122 Sept. 2021

Publikationsreihe

NameProceedings - International Conference on Image Processing, ICIP
Band2021-September
ISSN (Print)1522-4880

Konferenz

Konferenz2021 IEEE International Conference on Image Processing, ICIP 2021
Land/GebietUSA/Vereinigte Staaten
OrtAnchorage
Zeitraum19/09/2122/09/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „FACE AGGREGATION NETWORK FOR VIDEO FACE RECOGNITION“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren