EyeLad: Remote eye tracking image labeling tool: Supportive eye, eyelid and pupil labeling tool for remote eye tracking videos

Wolfgang Fuhl, Thiago Santini, David Geisler, Thomas Kübler, Enkelejda Kasneci

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

5 Zitate (Scopus)

Abstract

Ground truth data is an important prerequisite for the development and evaluation of many algorithms in the area of computer vision, especially when these are based on convolutional neural networks or other machine learning approaches that unfold their power mostly by supervised learning. This learning relies on ground truth data, which is laborious, tedious, and error prone for humans to generate. In this paper, we contribute a labeling tool (EyeLad) specifically designed for remote eye-tracking data to enable researchers to leverage machine learning based approaches in this field, which is of great interest for the automotive, medical, and human-computer interaction applications. The tool is multi platform and supports a variety of state-of-theart detection and tracking algorithms, including eye detection, pupil detection, and eyelid coarse positioning. Furthermore, the tool provides six types of point-wise tracking to automatically track the labeled points. The software is openly and freely available at: www.ti.uni-tuebingen.de/perception.

OriginalspracheEnglisch
TitelVISAPP
Redakteure/-innenFrancisco Imai, Jose Braz, Alain Tremeau
Herausgeber (Verlag)SciTePress
Seiten405-410
Seitenumfang6
ISBN (elektronisch)9789897582264
PublikationsstatusVeröffentlicht - 2017
Extern publiziertJa
Veranstaltung12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2017 - Porto, Portugal
Dauer: 27 Feb. 20171 März 2017

Publikationsreihe

NameVISIGRAPP 2017 - Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications
Band5

Konferenz

Konferenz12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2017
Land/GebietPortugal
OrtPorto
Zeitraum27/02/171/03/17

Fingerprint

Untersuchen Sie die Forschungsthemen von „EyeLad: Remote eye tracking image labeling tool: Supportive eye, eyelid and pupil labeling tool for remote eye tracking videos“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren