Extended sparse nonnegative matrix factorization

Kurt Stadlthanner, Fabian J. Theis, Carlos G. Puntonet, Elmar W. Lang

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

10 Zitate (Scopus)

Abstract

In sparse nonnegative component analysis (sparse NMF) a given dataset is decomposed into a mixing matrix and a feature data set, which are both nonnegative and fulfill certain sparsity constraints. In this paper, we extend the sparse NMF algorithm to allow for varying sparsity in each feature and discuss the uniqueness of an involved projection step. Furthermore, the eligibility of the extended sparse NMF algorithm for blind source separation is investigated.

OriginalspracheEnglisch
Seiten (von - bis)249-256
Seitenumfang8
FachzeitschriftLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Jahrgang3512
DOIs
PublikationsstatusVeröffentlicht - 2005
Extern publiziertJa
Veranstaltung8th International Workshop on Artificial Neural Networks, IWANN 2005: Computational Intelligence and Bioinspired Systems - Vilanova i la Geltru, Spanien
Dauer: 8 Juni 200510 Juni 2005

Fingerprint

Untersuchen Sie die Forschungsthemen von „Extended sparse nonnegative matrix factorization“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren