Extended Framework and Evaluation for Multivariate Streaming Anomaly Detection with Machine Learning

Andreas Koch, Michael Petry, Martin Werner

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Streaming anomaly detection in multivariate time series is an important problem relevant for automatic monitoring of various devices. This paper tackles the problem of streaming anomaly detection by extending a framework for the purpose of incorporating model-based approaches and evaluating previously uncombined methods for a total number of 26 distinct machinelearning-based algorithms. The framework identifies four fundamental components inherent to many streaming anomaly detection algorithms and one or more methods are presented for each component. It is found that a simple and computationally less expensive strategy for detecting concept drift yields almost identical results to the ''KSWIN'' strategy, when applied to measuring concept drift in a training set relevant for training a machine learning model. A secondary experiment supports the effectiveness of finetuning a machine learning model after the detection of concept drift for the purpose of detecting anomalies.

OriginalspracheEnglisch
TitelProceedings - 2024 IEEE 40th International Conference on Data Engineering Workshops, ICDEW 2024
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten144-152
Seitenumfang9
ISBN (elektronisch)9798350317152
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung40th IEEE International Conference on Data Engineering Workshops, ICDEW 2024 - Utrecht, Niederlande
Dauer: 13 Mai 202416 Mai 2024

Publikationsreihe

NameProceedings - 2024 IEEE 40th International Conference on Data Engineering Workshops, ICDEW 2024

Konferenz

Konferenz40th IEEE International Conference on Data Engineering Workshops, ICDEW 2024
Land/GebietNiederlande
OrtUtrecht
Zeitraum13/05/2416/05/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „Extended Framework and Evaluation for Multivariate Streaming Anomaly Detection with Machine Learning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren