Exponential space computation of Groebner bases

Klaus Kuehnle, Ernst W. Mayr

Publikation: KonferenzbeitragPapierBegutachtung

21 Zitate (Scopus)

Abstract

Given a polynomial ideal and a term order, there is a unique reduced Groebner basis and, for each polynomial, a unique normal form, namely the smallest (with respect to the term order) polynomial in the same coset. We consider the problem of finding this normal form for any given polynomial without prior computation of the Groebner basis. This is done by transforming a representation of the normal form into a system of linear equations and solving this system. Using the ability to find normal forms, we show how to obtain the Groebner basis in exponential space.

OriginalspracheEnglisch
Seiten63-71
Seitenumfang9
PublikationsstatusVeröffentlicht - 1996
VeranstaltungProceedings of the 1996 International Symposium on Symbolic and Algebraic Computation, ISSAC 96 - Zurich, Switz
Dauer: 24 Juli 199626 Juli 1996

Konferenz

KonferenzProceedings of the 1996 International Symposium on Symbolic and Algebraic Computation, ISSAC 96
OrtZurich, Switz
Zeitraum24/07/9626/07/96

Fingerprint

Untersuchen Sie die Forschungsthemen von „Exponential space computation of Groebner bases“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren