Exponential convergence to equilibrium for coupled systems of nonlinear degenerate drift diffusion equations

Lisa Beck, Daniel Matthes, Martina Zizza

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

1 Zitat (Scopus)

Abstract

We study the existence and long-Time asymptotics of weak solutions to a system of two nonlinear drift-diffusion equations that has a gradient flow structure in the Wasserstein distance. The two equations are coupled through a cross-diffusion term that is scaled by a parameter \varepsilon \geq 0. The nonlinearities and potentials are chosen such that in the decoupled system for \varepsilon = 0, the evolution is metrically contractive, with a global rate \Lambda < 0\Lambda < 0. The coupling is a singular perturbation in the sense that for any \varepsilon < 0, contractivity of the system is lost. Our main result is that for all sufficiently small \varepsilon < 0, the global attraction to a unique steady state persists, with an exponential rate \Lambda \varepsilon = \Lambda K\varepsilon for some k < 0. The proof combines results from the theory of metric gradient flows with further variational methods and functional inequalities.

OriginalspracheEnglisch
Seiten (von - bis)1766-1809
Seitenumfang44
FachzeitschriftSIAM Journal on Mathematical Analysis
Jahrgang53
Ausgabenummer3
DOIs
PublikationsstatusVeröffentlicht - 2023

Fingerprint

Untersuchen Sie die Forschungsthemen von „Exponential convergence to equilibrium for coupled systems of nonlinear degenerate drift diffusion equations“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren