Exploring the Usefulness of Machine Learning in the Context of WebRTC Performance Estimation

Doreid Ammar, Katrien De Moor, Lea Skorin-Kapov, Markus Fiedler, Poul E. Heegaard

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

11 Zitate (Scopus)

Abstract

We address the challenge faced by service providers in monitoring Quality of Experience (QoE) related metrics for WebRTC-based audiovisual communication services. By extracting features from various application-layer performance statistics, we explore the potential of using machine learning (ML) models to estimate perceivable quality impairments and to identify root causes. We argue that such performance-related data can be valuable and informative from a QoE assessment point of view, by allowing to identify the party/parties in a call that is/are experiencing quality impairments, and to trace the origins and causes of the problem. The paper includes case studies of multi-party videoconferencing that are established in a laboratory environment and exposed to various network disturbances and CPU limitations. Our results show that perceivable quality impairments in terms of video blockiness and audio distortions may be estimated with a high level of accuracy, thus proving the potential of exploiting ML models for automated QoE-driven monitoring and estimation of WebRTC performance.

OriginalspracheEnglisch
TitelProceedings of the 44th Annual IEEE Conference on Local Computer Networks, LCN 2019
Redakteure/-innenKarl Andersson, Hwee-Pink Tan, Sharief Oteafy
Herausgeber (Verlag)IEEE Computer Society
Seiten406-413
Seitenumfang8
ISBN (elektronisch)9781728110288
DOIs
PublikationsstatusVeröffentlicht - Okt. 2019
Extern publiziertJa
Veranstaltung44th Annual IEEE Conference on Local Computer Networks, LCN 2019 - Osnabruck, Deutschland
Dauer: 14 Okt. 201917 Okt. 2019

Publikationsreihe

NameProceedings - Conference on Local Computer Networks, LCN
Band2019-October

Konferenz

Konferenz44th Annual IEEE Conference on Local Computer Networks, LCN 2019
Land/GebietDeutschland
OrtOsnabruck
Zeitraum14/10/1917/10/19

Fingerprint

Untersuchen Sie die Forschungsthemen von „Exploring the Usefulness of Machine Learning in the Context of WebRTC Performance Estimation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren