Exploring Muscle Synergies for Performance Enhancement and Learning in Myoelectric Control Maps

K. C. Tse, P. Capsi-Morales, T. Spiegeler Castaneda, C. Piazza

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

3 Zitate (Scopus)

Abstract

This work proposes two myoelectric control maps based on a DoF-wise synergy algorithm, inspired by human motor control studies. One map, called intuitive, matches control outputs with body movement directions. The second one, named non-intuitive, takes advantage of different synergies contribution to each DoF, without specific correlation to body movement directions. The effectiveness and learning process for the two maps is evaluated through performance metrics in ten able-bodied individuals. The analysis was conducted using a 2-DoFs center-reach-out task and a survey. Results showed equivalent performance and perception for both mappings. However, learning is only visible in subjects that performed better in non-intuitive mapping, that required some familiarization to then exploit its features. Most of the myoelectric control designs use intuitive mappings. Nevertheless, non-intuitive mapping could provide more design flexibility, which can be especially interesting for patients with motor disabilities.

OriginalspracheEnglisch
Titel2023 International Conference on Rehabilitation Robotics, ICORR 2023
Herausgeber (Verlag)IEEE Computer Society
ISBN (elektronisch)9798350342758
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung2023 International Conference on Rehabilitation Robotics, ICORR 2023 - Singapore, Singapur
Dauer: 24 Sept. 202328 Sept. 2023

Publikationsreihe

NameIEEE International Conference on Rehabilitation Robotics
ISSN (Print)1945-7898
ISSN (elektronisch)1945-7901

Konferenz

Konferenz2023 International Conference on Rehabilitation Robotics, ICORR 2023
Land/GebietSingapur
OrtSingapore
Zeitraum24/09/2328/09/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Exploring Muscle Synergies for Performance Enhancement and Learning in Myoelectric Control Maps“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren