Exploring Eye Tracking as a Measure for Cognitive Load Detection in VR Locomotion

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

Eye tracking data has long been recognized as a reliable indicator of user cognitive load levels during human-computer interaction (HCI) tasks. However, its potential in the context of virtual reality (VR) remains relatively unexplored. Here, we present an ongoing study aimed at investigating the feasibility of detecting cognitive load in VR, particularly during VR locomotion, using an eye-tracking-based machine-learning approach. Data were collected using a within-subjects design, with participants performing VR locomotion tasks using five locomotion techniques. Our preliminary analyses validate the effectiveness of leveraging eye-tracking data as informative features in uncovering cognitive load in VR locomotion contexts, which motivates our further explorations.

OriginalspracheEnglisch
TitelProceedings - ETRA 2024, ACM Symposium on Eye Tracking Research and Applications
Redakteure/-innenStephen N. Spencer
Herausgeber (Verlag)Association for Computing Machinery
ISBN (elektronisch)9798400706073
DOIs
PublikationsstatusVeröffentlicht - 4 Juni 2024
Veranstaltung16th Annual ACM Symposium on Eye Tracking Research and Applications, ETRA 2024 - Hybrid, Glasgow, Großbritannien/Vereinigtes Königreich
Dauer: 4 Juni 20247 Juni 2024

Publikationsreihe

NameEye Tracking Research and Applications Symposium (ETRA)

Konferenz

Konferenz16th Annual ACM Symposium on Eye Tracking Research and Applications, ETRA 2024
Land/GebietGroßbritannien/Vereinigtes Königreich
OrtHybrid, Glasgow
Zeitraum4/06/247/06/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „Exploring Eye Tracking as a Measure for Cognitive Load Detection in VR Locomotion“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren