Exploiting the locality properties of Peano curves for parallel matrix multiplication

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

6 Zitate (Scopus)

Abstract

The present work studies an approach to exploit the locality properties of an inherently cache-efficient algorithm for matrix multiplication in a parallel implementation. The algorithm is based on a blockwise element layout and an execution order that are derived from a Peano space-filling curve. The strong locality properties induced in the resulting algorithm motivate a parallel algorithm that replicates matrix blocks in local caches that will prefetch remote blocks before they are used. As a consequence, the block size for matrix multiplication and the cache sizes, and hence the granularity of communication, can be chosen independently. The influence of these parameters on parallel efficiency is studied on a compute cluster with 128 processors. Performance studies show that the largest influence on performance stems from the size of the local caches, which makes the algorithm an interesting option for all situations where memory is scarce, or where existing cache hierarchies can be exploited (as in future manycore environments, e.g.).

OriginalspracheEnglisch
TitelEuro-Par 2008 Parallel Processing - 14th International Euro-Par Conference, Proceedings
Seiten801-810
Seitenumfang10
DOIs
PublikationsstatusVeröffentlicht - 2008
Veranstaltung14th International Euro-Par Conference, Euro-Par 2008 - Las Palmas de Gran Canaria, Spanien
Dauer: 26 Aug. 200829 Aug. 2008

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band5168 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz14th International Euro-Par Conference, Euro-Par 2008
Land/GebietSpanien
OrtLas Palmas de Gran Canaria
Zeitraum26/08/0829/08/08

Fingerprint

Untersuchen Sie die Forschungsthemen von „Exploiting the locality properties of Peano curves for parallel matrix multiplication“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren