Exploiting repetitive object patterns for model compression and completion

Luciano Spinello, Rudolph Triebel, Dizan Vasquez, Kai O. Arras, Roland Siegwart

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

4 Zitate (Scopus)

Abstract

Many man-made and natural structures consist of similar elements arranged in regular patterns. In this paper we present an unsupervised approach for discovering and reasoning on repetitive patterns of objects in a single image. We propose an unsupervised detection technique based on a voting scheme of image descriptors. We then introduce the concept of latticelets: minimal sets of arcs that generalize the connectivity of repetitive patterns. Latticelets are used for building polygonal cycles where the smallest cycles define the sought groups of repetitive elements. The proposed method can be used for pattern prediction and completion and high-level image compression. Conditional Random Fields are used as a formalism to predict the location of elements at places where they are partially occluded or detected with very low confidence. Model compression is achieved by extracting and efficiently representing the repetitive structures in the image. Our method has been tested on simulated and real data and the quantitative and qualitative result show the effectiveness of the approach.

OriginalspracheEnglisch
TitelComputer Vision, ECCV 2010 - 11th European Conference on Computer Vision, Proceedings
Herausgeber (Verlag)Springer Verlag
Seiten296-309
Seitenumfang14
AuflagePART 5
ISBN (Print)3642155545, 9783642155543
DOIs
PublikationsstatusVeröffentlicht - 2010
Extern publiziertJa
Veranstaltung11th European Conference on Computer Vision, ECCV 2010 - Heraklion, Crete, Griechenland
Dauer: 10 Sept. 201011 Sept. 2010

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NummerPART 5
Band6315 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz11th European Conference on Computer Vision, ECCV 2010
Land/GebietGriechenland
OrtHeraklion, Crete
Zeitraum10/09/1011/09/10

Fingerprint

Untersuchen Sie die Forschungsthemen von „Exploiting repetitive object patterns for model compression and completion“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren