Exploiting gradient histograms for gait-based person identification

Martin Hofmann, Gerhard Rigoll

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

16 Zitate (Scopus)

Abstract

In this paper, we exploit gradient histograms for person identification based on gait. A traditional and successful method for gait recognition is the Gait Energy Image (GEI). Here, person silhouettes are averaged over full gait cycles, which leads to a robust and efficient representation. However, binarized silhouettes only capture edge information at the boundary of the person. By contrast, the Gradient Histogram Energy Image (GHEI) also captures edges within the silhouette by means of gradient histograms. Combined with precise α-matte preprocessing and with a new part-based extension, recognition performance can be further improved. In addition, we show, that GEI can even be outperformed by directly applying gradient histogram extraction on the already bina-rized silhouettes. We run all experiments on the widely used HumanID gait database and show significant performance improvements over the current state of the art.

OriginalspracheEnglisch
Titel2013 IEEE International Conference on Image Processing, ICIP 2013 - Proceedings
Herausgeber (Verlag)IEEE Computer Society
Seiten4171-4175
Seitenumfang5
ISBN (Print)9781479923410
DOIs
PublikationsstatusVeröffentlicht - 2013
Veranstaltung2013 20th IEEE International Conference on Image Processing, ICIP 2013 - Melbourne, VIC, Australien
Dauer: 15 Sept. 201318 Sept. 2013

Publikationsreihe

Name2013 IEEE International Conference on Image Processing, ICIP 2013 - Proceedings

Konferenz

Konferenz2013 20th IEEE International Conference on Image Processing, ICIP 2013
Land/GebietAustralien
OrtMelbourne, VIC
Zeitraum15/09/1318/09/13

Fingerprint

Untersuchen Sie die Forschungsthemen von „Exploiting gradient histograms for gait-based person identification“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren