EXPLAINING KERNEL CLUSTERING VIA DECISION TREES

Maximilian Fleissner, Leena C. Vankadara, Debarghya Ghoshdastidar

Publikation: KonferenzbeitragPapierBegutachtung

Abstract

Despite the growing popularity of explainable and interpretable machine learning, there is still surprisingly limited work on inherently interpretable clustering methods. Recently, there has been a surge of interest in explaining the classic k-means algorithm, leading to efficient algorithms that approximate k-means clusters using axis-aligned decision trees. However, interpretable variants of k-means have limited applicability in practice, where more flexible clustering methods are often needed to obtain useful partitions of the data. In this work, we investigate interpretable kernel clustering, and propose algorithms that construct decision trees to approximate the partitions induced by kernel k-means, a nonlinear extension of k-means. We further build on previous work on explainable k-means and demonstrate how a suitable choice of features allows preserving interpretability without sacrificing approximation guarantees on the interpretable model.

OriginalspracheEnglisch
PublikationsstatusVeröffentlicht - 2024
Veranstaltung12th International Conference on Learning Representations, ICLR 2024 - Hybrid, Vienna, Österreich
Dauer: 7 Mai 202411 Mai 2024

Konferenz

Konferenz12th International Conference on Learning Representations, ICLR 2024
Land/GebietÖsterreich
OrtHybrid, Vienna
Zeitraum7/05/2411/05/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „EXPLAINING KERNEL CLUSTERING VIA DECISION TREES“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren