Expert-LaSTS: Expert-Knowledge Guided Latent Space for Traffic Scenarios

Jonas Wurst, Lakshman Balasubramanian, Michael Botsch, Wolfgang Utschick

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

8 Zitate (Scopus)

Abstract

Clustering traffic scenarios and detecting novel scenario types are required for scenario-based testing of autonomous vehicles. These tasks benefit from either good similarity measures or good representations for the traffic scenarios. In this work, an expert-knowledge aided representation learning for traffic scenarios is presented. The latent space so formed is used for successful clustering and novel scenario type detection. Expert-knowledge is used to define objectives that the latent representations of traffic scenarios shall fulfill. It is presented, how the network architecture and loss is designed from these objectives, thereby incorporating expert-knowledge. An automatic mining strategy for traffic scenarios is presented, such that no manual labeling is required. Results show the performance advantage compared to baseline methods. Additionally, extensive analysis of the latent space is performed.

OriginalspracheEnglisch
Titel2022 IEEE Intelligent Vehicles Symposium, IV 2022
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten484-491
Seitenumfang8
ISBN (elektronisch)9781665488211
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung2022 IEEE Intelligent Vehicles Symposium, IV 2022 - Aachen, Deutschland
Dauer: 5 Juni 20229 Juni 2022

Publikationsreihe

NameIEEE Intelligent Vehicles Symposium, Proceedings
Band2022-June

Konferenz

Konferenz2022 IEEE Intelligent Vehicles Symposium, IV 2022
Land/GebietDeutschland
OrtAachen
Zeitraum5/06/229/06/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „Expert-LaSTS: Expert-Knowledge Guided Latent Space for Traffic Scenarios“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren