ExAgt: Expert-guided Augmentation for Representation Learning of Traffic Scenarios

Lakshman Balasubramanian, Jonas Wurst, Robin Egolf, Michael Botsch, Wolfgang Utschick, Ke Deng

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

Representation learning in recent years has been addressed with self-supervised learning methods. The input data is augmented into two distorted views and an encoder learns the representations that are invariant to distortions - cross-view prediction. Augmentation is one of the key components in cross-view self-supervised learning frameworks to learn visual representations. This paper presents ExAgt, a novel method to include expert knowledge for augmenting traffic scenarios, to improve the learnt representations without any human annotation. The expert-guided augmentations are generated in an automated fashion based on the infrastructure, the interactions between the EGO and the traffic participants and an ideal sensor model. The ExAgt method is applied in two state-of-the-art cross-view prediction methods and the representations learnt are tested in downstream tasks like classification and clustering. Results show that the ExAgt method improves representation learning compared to using only standard augmentations and it provides a better representation space stability. The code is available at https://github.com/lab176344/ExAgt.

OriginalspracheEnglisch
Titel2022 IEEE 25th International Conference on Intelligent Transportation Systems, ITSC 2022
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten1471-1478
Seitenumfang8
ISBN (elektronisch)9781665468800
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung25th IEEE International Conference on Intelligent Transportation Systems, ITSC 2022 - Macau, China
Dauer: 8 Okt. 202212 Okt. 2022

Publikationsreihe

NameIEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC
Band2022-October

Konferenz

Konferenz25th IEEE International Conference on Intelligent Transportation Systems, ITSC 2022
Land/GebietChina
OrtMacau
Zeitraum8/10/2212/10/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „ExAgt: Expert-guided Augmentation for Representation Learning of Traffic Scenarios“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren