Evolving learning for analysing mood-related infant vocalisation

Zixing Zhang, Jing Han, Kun Qian, Björn Schuller

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

5 Zitate (Scopus)

Abstract

Infant vocalisation analysis plays an important role in the study of the development of pre-speech capability of infants, while machine-based approaches nowadays emerge with an aim to advance such an analysis. However, conventional machine learning techniques require heavy feature-engineering and refined architecture designing. In this paper, we present an evolving learning framework to automate the design of neural network structures for infant vocalisation analysis. In contrast to manually searching by trial and error, we aim to automate the search process in a given space with less interference. This framework consists of a controller and its child networks, where the child networks are built according to the controller's estimation. When applying the framework to the Interspeech 2018 Computational Paralinguistics (ComParE) Crying Sub-challenge, we discover several deep recurrent neural network structures, which are able to deliver competitive results to the best ComParE baseline method.

OriginalspracheEnglisch
Seiten (von - bis)142-146
Seitenumfang5
FachzeitschriftProceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH
Jahrgang2018-September
DOIs
PublikationsstatusVeröffentlicht - 2018
Extern publiziertJa
Veranstaltung19th Annual Conference of the International Speech Communication, INTERSPEECH 2018 - Hyderabad, Indien
Dauer: 2 Sept. 20186 Sept. 2018

Fingerprint

Untersuchen Sie die Forschungsthemen von „Evolving learning for analysing mood-related infant vocalisation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren