Evolutionary feature generation in speech emotion recognition

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

48 Zitate (Scopus)

Abstract

Feature sets are broadly discussed within speech emotion recognition by acoustic analysis. While popular filter and wrapper based search help to retrieve relevant ones, we feel that automatic generation of such allows for more flexibility throughout search. The basis is formed by dynamic Low-Level Descriptors considering intonation, intensity, formants, spectral information and others. Next, systematic derivation of prosodic, articulatory, and voice quality high level functionals is performed by descriptive statistical analysis. From here on feature alterations are automatically fulfilled, to find an optimal representation within feature space in view of a target classifier. To avoid NP-hard exhaustive search, we suggest use of evolutionary programming. Significant overall performance improvement over former works can be reported on two public databases.

OriginalspracheEnglisch
Titel2006 IEEE International Conference on Multimedia and Expo, ICME 2006 - Proceedings
Seiten5-8
Seitenumfang4
DOIs
PublikationsstatusVeröffentlicht - 2006
Veranstaltung2006 IEEE International Conference on Multimedia and Expo, ICME 2006 - Toronto, ON, Kanada
Dauer: 9 Juli 200612 Juli 2006

Publikationsreihe

Name2006 IEEE International Conference on Multimedia and Expo, ICME 2006 - Proceedings
Band2006

Konferenz

Konferenz2006 IEEE International Conference on Multimedia and Expo, ICME 2006
Land/GebietKanada
OrtToronto, ON
Zeitraum9/07/0612/07/06

Fingerprint

Untersuchen Sie die Forschungsthemen von „Evolutionary feature generation in speech emotion recognition“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren