Evolutionary estimation of a coupled Markov Chain credit risk model

Ronald Hochreiter, David Wozabal

Publikation: Beitrag in Buch/Bericht/KonferenzbandKapitelBegutachtung

2 Zitate (Scopus)

Abstract

There exists a range of different models for estimating and simulating credit risk transitions to optimally manage credit risk portfolios and products. In this chapter we present a Coupled Markov Chain approach to model rating transitions and thereby default probabilities of companies. As the likelihood of the model turns out to be a non-convex function of the parameters to be estimated, we apply heuristics to find the ML estimators. To this end, we outline the model and its likelihood function, and present both a Particle Swarm Optimization algorithm, as well as an Evolutionary Optimization algorithm to maximize the likelihood function. Numerical results are shown which suggest a further application of evolutionary optimization techniques for credit risk management.

OriginalspracheEnglisch
TitelNatural Computing in Computational Finance
Herausgeber (Verlag)Springer Verlag
Seiten31-44
Seitenumfang14
ISBN (Print)9783642139499
DOIs
PublikationsstatusVeröffentlicht - 2010
Extern publiziertJa

Publikationsreihe

NameStudies in Computational Intelligence
Band293
ISSN (Print)1860-949X

Fingerprint

Untersuchen Sie die Forschungsthemen von „Evolutionary estimation of a coupled Markov Chain credit risk model“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren