Event-driven anomalies in spatiotemporal taxi passseger demand

Michael Wittmann, Michael Kollek, Markus Lienkamp

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

We propose a grid-based approach of mining historical taxi GPS data to study anomalous pickup patterns in spatiotemporal passenger demand caused by public events. The developed method is applied by way of example to the city of Munich on a large-scale taxi dataset. Information about occurring public events is collected from different online and offline sources. For further analysis, the data is aggregated on an equally distributed grid level based on geohashes. In a first step, an extension of robust principle component analysis (RPCA) is developed and applied to the dataset. It is shown that extended RPCA can separate anomalous pickup patterns from base demand in the given time series. Secondly, the combination of anomaly detection and knowledge about occurring public events allows the exploration of correlations in demand fluctuations. The results show that the proposed method can be used to discover the potential impact of public events on spatiotemporal passenger demand in large-scale mobility datasets.

OriginalspracheEnglisch
Titel2018 IEEE Intelligent Transportation Systems Conference, ITSC 2018
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten979-984
Seitenumfang6
ISBN (elektronisch)9781728103235
DOIs
PublikationsstatusVeröffentlicht - 7 Dez. 2018
Veranstaltung21st IEEE International Conference on Intelligent Transportation Systems, ITSC 2018 - Maui, USA/Vereinigte Staaten
Dauer: 4 Nov. 20187 Nov. 2018

Publikationsreihe

NameIEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC
Band2018-November

Konferenz

Konferenz21st IEEE International Conference on Intelligent Transportation Systems, ITSC 2018
Land/GebietUSA/Vereinigte Staaten
OrtMaui
Zeitraum4/11/187/11/18

Fingerprint

Untersuchen Sie die Forschungsthemen von „Event-driven anomalies in spatiotemporal taxi passseger demand“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren