Evaluation of neural-network-based channel estimators using measurement data

Christoph Hellings, Aymen Dehmani, Stefan Wesemann, Michael Koller, Wolfgang Utschick

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

12 Zitate (Scopus)

Abstract

In multiantenna communication systems, side knowledge about the structure of the possible channel realizations can be exploited to improve the accuracy of the channel estimates and to reduce the computational complexity of the channel estimation procedure. To this end, it has been proposed to train a neural network based on channel realizations from the considered scenario such that the resulting estimator is specialized in the estimation of channel realizations that might occur in this particular scenario. While existing work has evaluated the performance of this approach only based on artificially generated channel realizations from a 3GPP channel model, we train and test the neural-network-based channel estimator with realistic channel realizations from a measurement campaign. The results indicate that the good performance observed in the model-based simulations carries over to more realistic experiments with measured data.

OriginalspracheEnglisch
TitelWSA 2019 - 23rd International ITG Workshop on Smart Antennas
Herausgeber (Verlag)VDE VERLAG GMBH
Seiten164-168
Seitenumfang5
ISBN (elektronisch)9783800749409
PublikationsstatusVeröffentlicht - 2019
Veranstaltung23rd International ITG Workshop on Smart Antennas, WSA 2019 - Vienna, Österreich
Dauer: 24 Apr. 201926 Apr. 2019

Publikationsreihe

NameWSA 2019 - 23rd International ITG Workshop on Smart Antennas

Konferenz

Konferenz23rd International ITG Workshop on Smart Antennas, WSA 2019
Land/GebietÖsterreich
OrtVienna
Zeitraum24/04/1926/04/19

Fingerprint

Untersuchen Sie die Forschungsthemen von „Evaluation of neural-network-based channel estimators using measurement data“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren