Evaluation of a Gaussian Mixture Model-based Channel Estimator using Measurement Data

Nurettin Turan, Benedikt Fesl, Moritz Grundei, Michael Koller, Wolfgang Utschick

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

8 Zitate (Scopus)

Abstract

In this work, we use real-world data in order to evaluate and validate a machine learning (ML)-based algorithm for physical layer functionalities. Specifically, we apply a recently introduced Gaussian mixture model (GMM)-based algorithm in order to estimate uplink channels stemming from a measurement campaign. For this estimator, there is an initial (offline) training phase, where a GMM is fitted onto given channel (training) data. Thereafter, the fitted GMM is used for (online) channel estimation. Our experiments suggest that the GMM estimator learns the intrinsic characteristics of a given base station's whole radio propagation environment. Essentially, this ambient information is captured due to universal approximation properties of the initially fitted GMM. For a large enough number of GMM components, the GMM estimator was shown to approximate the (unknown) mean squared error (MSE)-optimal channel estimator arbitrarily well. In our experiments, the GMM estimator shows significant performance gains compared to approaches that are not able to capture the ambient information. To validate the claim that ambient information is learnt, we generate synthetic channel data using a state-of-the-art channel simulator and train the GMM estimator once on these and once on the real data, and we apply the estimator once to the synthetic and once to the real data. We then observe how providing suitable ambient information in the training phase beneficially impacts the later channel estimation performance.

OriginalspracheEnglisch
Titel2022 International Symposium on Wireless Communication Systems, ISWCS 2022
Herausgeber (Verlag)VDE VERLAG GMBH
ISBN (elektronisch)9781665455442
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung2022 International Symposium on Wireless Communication Systems, ISWCS 2022 - Hangzhou, China
Dauer: 19 Okt. 202222 Okt. 2022

Publikationsreihe

NameProceedings of the International Symposium on Wireless Communication Systems
Band2022-October
ISSN (Print)2154-0217
ISSN (elektronisch)2154-0225

Konferenz

Konferenz2022 International Symposium on Wireless Communication Systems, ISWCS 2022
Land/GebietChina
OrtHangzhou
Zeitraum19/10/2222/10/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „Evaluation of a Gaussian Mixture Model-based Channel Estimator using Measurement Data“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren