Estimation of rank deficient covariance matrices with Kronecker structure

Mario H. Castaneda, Josef A. Nossek

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

5 Zitate (Scopus)

Abstract

Given a set of observations, the estimation of covariance matrices is required in the analysis of many applications. To this end, any know structure of the covariance matrix can be taken into account. For instance, in case of separable processes, the covariance matrix is given by the Kronecker product of two factor matrices. Assuming the covariance matrix is full rank, the maximum likelihood (ML) estimate in this case leads to an iterative algorithm known as the flip-flop algorithm in the literature. In this work, we first generalize the flip-flop algorithm to the case when the covariance matrix is rank deficient, which happens to be the case in several situations. In addition, we propose a non-iterative estimation approach which incurs in a performance loss compared to the ML estimate, but at the expense of less complexity.

OriginalspracheEnglisch
Titel2014 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2014
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten394-398
Seitenumfang5
ISBN (Print)9781479928927
DOIs
PublikationsstatusVeröffentlicht - 2014
Veranstaltung2014 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2014 - Florence, Italien
Dauer: 4 Mai 20149 Mai 2014

Publikationsreihe

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN (Print)1520-6149

Konferenz

Konferenz2014 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2014
Land/GebietItalien
OrtFlorence
Zeitraum4/05/149/05/14

Fingerprint

Untersuchen Sie die Forschungsthemen von „Estimation of rank deficient covariance matrices with Kronecker structure“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren