Estimating the Lyapunov exponents of chaotic time series: A model based method

M. Ataei, A. Khaki-Sedigh, B. Lohmann, C. Lucas

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

9 Zitate (Scopus)

Abstract

In this paper, the problem of Lyapunov Exponents (LEs) computation from chaotic time series based on Jacobian approach by using polynomial modelling is considered. The embedding dimension which is an important reconstruction parameter, is interpreted as the most suitable order of model. Based on a global polynomial model fitting to the given data, a novel criterion for selecting the suitable embedding dimension is presented. By considering this dimension as the model order, by evaluating the prediction error of different models, the best nonlinearity degree of polynomial model is estimated. This selected structure is used in each point of the reconstructed state space to model the system dynamics locally and calculate the Jacobian matrices which are used in QR factorization method in the LEs estimation. This procedure is also applied to multivariate time series to include information from other time series and resolve probable shortcoming of the univariate case. Finally, simulation results are presented for some well-known chaotic systems to show the effectiveness of the proposed methodology.

OriginalspracheEnglisch
TitelEuropean Control Conference, ECC 2003
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten3106-3111
Seitenumfang6
ISBN (elektronisch)9783952417379
DOIs
PublikationsstatusVeröffentlicht - 13 Apr. 2003
Extern publiziertJa
Veranstaltung2003 European Control Conference, ECC 2003 - Cambridge, Großbritannien/Vereinigtes Königreich
Dauer: 1 Sept. 20034 Sept. 2003

Publikationsreihe

NameEuropean Control Conference, ECC 2003

Konferenz

Konferenz2003 European Control Conference, ECC 2003
Land/GebietGroßbritannien/Vereinigtes Königreich
OrtCambridge
Zeitraum1/09/034/09/03

Fingerprint

Untersuchen Sie die Forschungsthemen von „Estimating the Lyapunov exponents of chaotic time series: A model based method“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren