Estimating remaining useful life of machine tool ball screws via probabilistic classification

Maximilian Benker, Robin Kleinwort, Michael F. Zäh

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

18 Zitate (Scopus)

Abstract

Ball screws are key components in machine tool linear feed drives since they translate the motors’ rotary motion into linear motion. With usage over time, however, tribological degradation of ball screws and the successive loss in preload can cause imprecise position accuracy and loss in manufacturing precision. Therefore condition monitoring (CM) of ball screws is important since it enables just in time replacement as well as the prevention of production stoppages and wasted material. This paper proposes an idea based on a probabilistic classification approach to monitor a ball screw’s preload condition with the help of modal parameters identified from vibration signals. It will be shown that by applying probabilistic classification models, uncertainties with respect to degradation can be quantified in an intuitive way and therefore can enhance the basis of decision making. Furthermore, it will be shown how a probabilistic classification approach allows the estimation of remaining useful life (RUL) for ball screws when the user only has access to discrete preload observations.

OriginalspracheEnglisch
Titel2019 IEEE International Conference on Prognostics and Health Management, ICPHM 2019
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9781538683576
DOIs
PublikationsstatusVeröffentlicht - Juni 2019
Veranstaltung2019 IEEE International Conference on Prognostics and Health Management, ICPHM 2019 - San Francisco, USA/Vereinigte Staaten
Dauer: 17 Juni 201920 Juni 2019

Publikationsreihe

Name2019 IEEE International Conference on Prognostics and Health Management, ICPHM 2019

Konferenz

Konferenz2019 IEEE International Conference on Prognostics and Health Management, ICPHM 2019
Land/GebietUSA/Vereinigte Staaten
OrtSan Francisco
Zeitraum17/06/1920/06/19

Fingerprint

Untersuchen Sie die Forschungsthemen von „Estimating remaining useful life of machine tool ball screws via probabilistic classification“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren