Estimating motorway traffic states with data fusion and physics-informed deep learning

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

10 Zitate (Scopus)

Abstract

Traffic state estimation is an essential task in traffic engineering. It requires observations of traffic that are, so far, even with emerging technologies, only partially available at large, as neither Eulerian nor Lagrangian observations are available everywhere at all times. We propose a methodology to fuse both observation types using physics informed deep learning that is based on the Lighthill-Whitham-Richards (LWR) model to estimate traffic states at locations without observations, in particular to infer traffic density. We use two types of fundamental diagrams: Greenshields' parabola and a differentiable version of the trapezoidal fundamental diagram in the estimation. In the latter, we estimate from the observations the collective impact of all, even immeasurable, factors that lead to a reduction in traffic performance. We apply it to real-world data from the German motorway A9, where we find that it provides an opportunity to improve the estimation and understanding of traffic density by data fusion.

OriginalspracheEnglisch
Titel2021 IEEE International Intelligent Transportation Systems Conference, ITSC 2021
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten2208-2214
Seitenumfang7
ISBN (elektronisch)9781728191423
DOIs
PublikationsstatusVeröffentlicht - 19 Sept. 2021
Veranstaltung2021 IEEE International Intelligent Transportation Systems Conference, ITSC 2021 - Indianapolis, USA/Vereinigte Staaten
Dauer: 19 Sept. 202122 Sept. 2021

Publikationsreihe

NameIEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC
Band2021-September

Konferenz

Konferenz2021 IEEE International Intelligent Transportation Systems Conference, ITSC 2021
Land/GebietUSA/Vereinigte Staaten
OrtIndianapolis
Zeitraum19/09/2122/09/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „Estimating motorway traffic states with data fusion and physics-informed deep learning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren