Ergodicity in Planar Slow-Fast Systems Through Slow Relation Functions

Renato Huzak, Hildeberto Jardón-Kojakhmetov, Christian Kuehn

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

Abstract

In this paper, we study ergodic properties of the slow relation function (or entry-exit function) in planar slow-fast systems. It is well known that zeros of the slow divergence integral associated with canard limit periodic sets give candidates for limit cycles. We present a new approach to detect the zeros of the slow divergence integral by studying the structure of the set of all probability measures invariant under the corresponding slow relation function. Using the slow relation function, we also show how to estimate (in terms of weak convergence) the transformation of families of probability measures that describe initial point distribution of canard orbits during the passage near a slow-fast Hopf point (or a more general turning point). We provide formulas to compute exit densities for given entry densities and the slow relation function. We apply our results to slow-fast Li\'enard equations.

OriginalspracheEnglisch
Seiten (von - bis)317-345
Seitenumfang29
FachzeitschriftSIAM Journal on Applied Dynamical Systems
Jahrgang24
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - 2025

Fingerprint

Untersuchen Sie die Forschungsthemen von „Ergodicity in Planar Slow-Fast Systems Through Slow Relation Functions“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren