Environment-adaptive learning: How clustering helps to obtain good training data

Shoubhik Debnath, Shiv Sankar Baishya, Rudolph Triebel, Varun Dutt, Daniel Cremers

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

1 Zitat (Scopus)

Abstract

In this paper, we propose a method to combine unsupervised and semi-supervised learning (SSL) into a system that is able to adaptively learn objects in a given environment with very little user interaction. The main idea of our approach is that clustering methods can help to reduce the number of required label queries from user interaction, and at the same time provide the potential to select useful data to learn from. In contrast to standard methods, we train our classifier only on data from the actual environment and only if the clustering gives enough evidence that the data is relevant. We apply our method to the problem of object detection in indoor environments, for which we use a region-of-interest detector before learning. In experiments we show that our adaptive SSL method can outperform the standard non-adaptive supervised approach on an indoor office data set.

OriginalspracheEnglisch
Seiten (von - bis)68-79
Seitenumfang12
FachzeitschriftLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Jahrgang8736
DOIs
PublikationsstatusVeröffentlicht - 2014

Fingerprint

Untersuchen Sie die Forschungsthemen von „Environment-adaptive learning: How clustering helps to obtain good training data“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren