Abstract
We propose an information-theoretic criterion, entropy estimate, for the joint alignment of a group of shape observations drawn from an unknown shape distribution. Employing a nonparametric density estimation technique with implicit shape representation, we minimize the entropy estimate with respect to the pose parameters of similarity transformations based on gradient descent optimization for which we provide implementation details. We demonstrate the capacity of our approach in numerous experiments with an application of building a shape prior to prostate MR image segmentation.
Originalsprache | Englisch |
---|---|
Aufsatznummer | 7118138 |
Seiten (von - bis) | 1922-1926 |
Seitenumfang | 5 |
Fachzeitschrift | IEEE Signal Processing Letters |
Jahrgang | 22 |
Ausgabenummer | 11 |
DOIs | |
Publikationsstatus | Veröffentlicht - 1 Nov. 2015 |