Entropic risk for turn-based stochastic games

Christel Baier, Krishnendu Chatterjee, Tobias Meggendorfer, Jakob Piribauer

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

Abstract

Entropic risk (ERisk) is an established risk measure in finance, quantifying risk by an exponential re-weighting of rewards. We study ERisk for the first time in the context of turn-based stochastic games with the total reward objective. This gives rise to an objective function that demands the control of systems in a risk-averse manner. We show that the resulting games are determined and, in particular, admit optimal memoryless deterministic strategies. This contrasts risk measures that previously have been considered in the special case of Markov decision processes and that require randomization and/or memory. We provide several results on the decidability and the computational complexity of the threshold problem, i.e. whether the optimal value of ERisk exceeds a given threshold. Furthermore, an approximation algorithm for the optimal value of ERisk is provided.

OriginalspracheEnglisch
Aufsatznummer105214
FachzeitschriftInformation and Computation
Jahrgang301
DOIs
PublikationsstatusVeröffentlicht - Dez. 2024
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „Entropic risk for turn-based stochastic games“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren