Enriching Thermal Point Clouds of Buildings using Semantic 3D building Models

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

Abstract

Thermal point clouds integrate thermal radiation and laser point clouds effectively. However, the semantic information for the interpretation of building thermal point clouds can hardly be precisely inferred. Transferring the semantics encapsulated in 3D building models at Level of Detail (LoD)3 has a potential to fill this gap. In this work, we propose a workflow enriching thermal point clouds with the geo-position and semantics of LoD3 building models, which utilizes features of both modalities: model point clouds are generated from LoD3 models, and thermal point clouds are co-registered by coarse-to-fine registration. The proposed method can automatically co-register the point clouds from different sources and enrich the thermal point cloud in facade-detailed semantics. The enriched thermal point cloud supports thermal analysis and can facilitate the development of currently scarce deep learning models operating directly on thermal point clouds.

OriginalspracheEnglisch
Seiten (von - bis)341-348
Seitenumfang8
FachzeitschriftISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Jahrgang10
Ausgabenummer4/W5-2024
DOIs
PublikationsstatusVeröffentlicht - 27 Juni 2024
Veranstaltung19th 3D GeoInfo Conference 2024 - Vigo, Spanien
Dauer: 1 Juli 20243 Juli 2024

Fingerprint

Untersuchen Sie die Forschungsthemen von „Enriching Thermal Point Clouds of Buildings using Semantic 3D building Models“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren