Enhancing Robustness Against Noisy CSI Data with a Single Uncertainty-Informed Model

Valentina Rizzello, Michael Joham, Wolfgang Utschick

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Neural networks (NNs) excel in wireless communications tasks, yet their adaptability to parameter changes like signal-to-noise ratio (SNR) and dependence on perfect channel knowledge are ongoing areas of research. In this study, we demonstrate that learning uncertainty is useful for developing models capable of generalizing across multiple SNR levels, without relying on noise-free channels or prior SNR information. The proposed approach can be conveniently integrated with any NN suitable for regression tasks. By focusing on channel prediction we introduce a method for uncertainty quantification, and we adjust the loss function accordingly. Simulation results highlight the advantages of our proposed techniques over traditional loss functions.

OriginalspracheEnglisch
Titel2024 IEEE 25th International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2024
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten361-365
Seitenumfang5
ISBN (elektronisch)9798350393187
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung25th IEEE International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2024 - Lucca, Italien
Dauer: 10 Sept. 202413 Sept. 2024

Publikationsreihe

NameIEEE Workshop on Signal Processing Advances in Wireless Communications, SPAWC
ISSN (Print)2325-3789

Konferenz

Konferenz25th IEEE International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2024
Land/GebietItalien
OrtLucca
Zeitraum10/09/2413/09/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „Enhancing Robustness Against Noisy CSI Data with a Single Uncertainty-Informed Model“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren