Enhancing Channel Estimation in Quantized Systems with a Generative Prior

Benedikt Fesl, Aziz Banna, Wolfgang Utschick

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Channel estimation in quantized systems is challenging, particularly in low-resolution systems. In this work, we propose to leverage a Gaussian mixture model (GMM) as generative prior, capturing the channel distribution of the propagation environment, to enhance a classical estimation technique based on the expectation-maximization (EM) algorithm for one-bit quantization. Thereby, a maximum a posteriori (MAP) estimate of the most responsible mixture component is inferred for a quantized received signal, which is subsequently utilized in the EM algorithm as side information. Numerical results demonstrate the significant performance improvement of our proposed approach over both a simplistic Gaussian prior and current state-of-the-art channel estimators. Furthermore, the proposed estimation framework exhibits adaptability to higher resolution systems and alternative generative priors.

OriginalspracheEnglisch
Titel2024 IEEE 25th International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2024
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten681-685
Seitenumfang5
ISBN (elektronisch)9798350393187
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung25th IEEE International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2024 - Lucca, Italien
Dauer: 10 Sept. 202413 Sept. 2024

Publikationsreihe

NameIEEE Workshop on Signal Processing Advances in Wireless Communications, SPAWC
ISSN (Print)2325-3789

Konferenz

Konferenz25th IEEE International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2024
Land/GebietItalien
OrtLucca
Zeitraum10/09/2413/09/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „Enhancing Channel Estimation in Quantized Systems with a Generative Prior“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren