Enhanced Precision in Built Environment Measurement: Integrating AprilTags Detection with Machine Learning

Shengtao Tan, Aravind Srinivasaragavan, Kepa Iturralde, Christoph Holst

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

In the field of building renovation with prefabricated modules, accurately locating and identifying connectors’ positions and orientations is an essential technological challenge. For building renovation with prefabricated modules, traditional methods like total stations are not only time-consuming but also highly dependent on experienced technicians. However, previous research has proven that ApriTtag tags can be effectively used in building measurements. This paper proposes a refined AprilTag detection pipeline that integrates machine learning techniques, significantly improving detection accuracy. Moreover, this process can be easily used by non-experts making it more accessible and less time-consuming.

OriginalspracheEnglisch
TitelProceedings of the 41st International Symposium on Automation and Robotics in Construction, ISARC 2024
Herausgeber (Verlag)International Association for Automation and Robotics in Construction (IAARC)
Seiten1295-1298
Seitenumfang4
ISBN (elektronisch)9780645832211
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung41st International Symposium on Automation and Robotics in Construction, ISARC 2024 - Lille, Frankreich
Dauer: 3 Juni 20245 Juni 2024

Publikationsreihe

NameProceedings of the International Symposium on Automation and Robotics in Construction
ISSN (elektronisch)2413-5844

Konferenz

Konferenz41st International Symposium on Automation and Robotics in Construction, ISARC 2024
Land/GebietFrankreich
OrtLille
Zeitraum3/06/245/06/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „Enhanced Precision in Built Environment Measurement: Integrating AprilTags Detection with Machine Learning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren