Energy-Efficient Scheduling

Publikation: Beitrag in Buch/Bericht/KonferenzbandKapitelBegutachtung

Abstract

We review algorithmic techniques for energy conservation in processing environments handling big data sets. Firstly, we address dynamic speed scaling, where processors can run at variable speed/frequency. The goal is to use the speed spectrum of the processors so as to minimize energy consumption while providing a desired service. Here we focus on multi-processor platforms with heterogeneous CPUs. Secondly, we examine power-down mechanisms where idle devices can be transitioned into low-power standby and sleep states. We consider power-down mechanisms in massively parallel systems, where the components have to coordinate their active and idle periods. In particular we focus on data centers with homogeneous as well as heterogeneous servers.

OriginalspracheEnglisch
TitelLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Herausgeber (Verlag)Springer Science and Business Media Deutschland GmbH
Seiten196-212
Seitenumfang17
DOIs
PublikationsstatusVeröffentlicht - 2022

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band13201 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Fingerprint

Untersuchen Sie die Forschungsthemen von „Energy-Efficient Scheduling“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren